ATCGTGTCAGTGCA TATCGCTAGCTTTG CTAGCTAACGCTGA TCGATCGATCGATC GATCGATCGCTAGA **TCGATCGTCGATGG GATTCTCAACGTGA GTTCGATCGATCGA TCGATCGATCGATC GATCGATCGATATAT CGATCGATCGATCG ATCGATCGATCTAG CTAGCGATCGATAT** <u>AGCT</u>ATCGATATTC **GCTATAGCGTCTCG TAGCTAGCTATAGCT ATCGTATCGATCGA CTTCGATCGATCGA TCGATCTAGCTAGC TGCAGCTAGCTAGC** TATCGCTAGTCAGT GATCGTGTCAGTGC **ATATCGCTAGCTTT GCTAGCTAACGCTG ATCGATCGATCGAT** CGATCGATCGCTAG ATCGATCGTCGATG **GGATTCTCAACGTG** <u>AGTTCGATCGATCG</u> <u>ATCGA<mark>T</mark>CGATCGAT</u> <u>CGATCGATC</u>GATATA TCGATCGATCGATC **GATCGATCGATCTA T**CGATCTAGCTAGC ## User Manual for iRepertoire on Cassette Kit iR-TCR and iR-BCR Reagent Systems Automated Construction of Human TCR/BCR Immunorepertoire Library on the iC-System for Next-Gen Sequencing with the Illumina MiSeq For research use only. Not to be used for clinical diagnostics. ### We Find Health in Your Diversity. iRepertoire[™] and iR logo are trademarks of iRepertoire, Inc. iCubate[™], iC-System[™], iC-Processor[™], iC-Reader[™], iC-Assay[™], and iC-Cassette[™] are trademarks of iCubate[™], Inc. Illumina[®], HiSeq[®], and MiSeq[®], are registered trademarks of Illumina, Inc. HiSeq2000[™] and GAIlx[™] are trademarks of Illumina, Inc. Qiagen[®], QIA[®], and QIAquick[®]are registered trademarks of the Qiagen Group. iMac[®] is a registered trademark of Apple Computer, Inc. All other brands and names contained herein are the property of their respective owner(s). The iC-System[™] components are covered by one or more US and worldwide patents pending. Arm-PCR is covered under US Patent 7,999,092 B2. For Research Use Only. NOT FOR USE IN DIAGNOSTIC PROCEDURES except for any components, procedures, or assays explicitly labeled otherwise. iRepertoire, Inc. does not assume any liability, whether direct or indirect, arising out of the application or use of any products, component parts, or software described herein or from any information contained in this manual. Furthermore, sale of iRepertoire, Inc. products does not constitute a license to any patent, trademark, copyright, or common-law rights of iRepertoire or the similar rights of others. iRepertoire, Inc. reserves the right to make any changes to any processes, products, or parts thereof, described herein without notice. While every effort has been made to make this manual as complete and accurate as possible as of the publication date, iRepertoire assumes no responsibility that the goods described herein will be fit for any particular purpose for which you may be buying these goods. ## **Table of Contents** | Introduction | 4 | |--|----| | Pooling Samples | 5 | | Template Selection: RNA vs. gDNA | 5 | | Package Contents & Storage | 6 | | Materials & Reagents Not Included | 7 | | General Information | 7 | | Protocol: Cassette Preparation | 10 | | Protocol: Sample Preparation | 10 | | Protocol: Running a Cassette | 12 | | Protocol: Elution of Library | 13 | | Determining if Library Generation was Successful | 14 | | Amplicon Size Range & Primer-dimer Removal | 15 | | High-throughput Sequencing | 16 | | Appendix A: QC and Sequencing Recommendations | 17 | | Appendix B: MiSeq Sample Sheet Workflow Parameters | 18 | ## Introduction Please read the iC-SystemTM User Manual for information regarding set-up and operation of the iC-platformTM. This handbook is applicable to iRepertoire cassettes run on the iC-SystemTM ONLY and should not be applied to another cassette unless explicitly stated. Please read this manual completely before beginning the experiment. The "**Pooling Samples**" and "**General Information**" sections are particularly important to read and understand before beginning sample preparation. The goal of the iRock product line is to provide the end-user a solution to amplify the immune repertoire in an automated and closed format. Furthermore, the amplified product, or library, is purified from primer-dimers in the cassette, removing the need for gel extraction of the primary amplification product. This goal is achieved by using the iC-processorTM and the closed cassette. First, the user adds their template RNA with the RT-enzyme. Two PCR reactions are completed by the instrument and residual primer-dimers are removed by magnetic selection of the primary product. After amplification and primer-dimer removal, the cassette is removed from the iC-ProcessorTM, and the amplified library is eluted from the magnetic beads in the cassette by the user. The cassette is placed on an iRep magnetic stand (provided with the kit), and the library is pipetted into a clean PCR tube. The amplified immune library is directly ready for quantification, pooling, QC, and sequencing using the Illumina MiSeq next generation sequencing platform. This manual provides instructions for amplifying a human TCR or BCR immunorepertoire library compatible with Illumina MiSeq next generation sequencing platform. This manual is compatible with the following iRepertoire Reagent Systems: HTBI-M and HBHI-M. Please see "Package Contents and Storage" for more information about these iRepertoire Reagent Systems. #### The arm-PCR Technology The arm-PCR (amplicon rescued multiplex PCR) technology is a patented multiplex amplification strategy (Patent No. 7,999,092) that utilizes a two-step reaction to amplify an immune repertoire, inclusively and semi-quantitatively (See Figure 1). Figure 1: Description of arm-PCR During the first round of PCR, nested gene-specific primers targeting each of the V and C genes are used. The forward primers Fo (forward-out) and Fi (forward-in) are located in the V genes. The reverse primers, Ro (reverse-out) and Ri (reverse-in), are located the C genes. The Fi and Ri primers also include sequencing adaptors B and A (see Appendix A), respectively, for the Illumina platforms (HiSeq, MiSeq and GAIIx) for paired-end sequencing. For the Ri primers, there are also barcodes in between the sequencing primer A and the C gene specific primers. The second round of PCR is carried out using communal (sequencing) primers B and A. The exponential phase of the amplification is achieved by the communal primers in the second round of PCR; therefore, the entire repertoire is amplified evenly and semi-quantitatively, without introducing additional amplification bias. After bead selection in the cassette, the resulting product is ready for high throughput sequencing with the Illumina platforms. No additional enzymatic steps are required, only quantification and QC prior to sequencing. ## **Pooling Samples** This manual provides instructions for generating a library from ONE sample in one cassette. One cassette includes enough reagents to produce 1 barcoded library [with the exception of the Qiagen One-Step reverse transcriptase (RT enzyme), which must be added to the cassette with the sample RNA]. However, to best utilize the Illumina sequencing capacity, libraries generated from up to 10 samples, each with a different barcode, can be pooled together in one single MiSeq flow cell. *Please note the cassettes are single-use only.* To study multiple samples in the same sequencing run, you need to purchase multiple iRepertoire cassettes with different barcodes, amplify the samples separately, pool the PCR products together before submitting the pooled library for sequencing. Our data analysis software will identify and differentiate the samples based on the barcodes used during arm-PCR. For example, if you want to study the human TCR beta repertoire of 20 samples, you should purchase 2 sets of 10 iRepertoire cassettes "HTBI-M-01-C" to "HTBI-M-10-C." Then, use one set of 10 cassettes to amplify the first 10 samples. After arm-PCR on the iCubate™ platform, the 10 PCR products can be pooled for one single MiSeq run. The next set of barcodes (with the same barcode numbers as the first set) can be used again for the next set of 10 samples for the second MiSeq run, etc. ## **Template Selection: RNA vs. gDNA** The iRock system only accepts RNA as a template. gDNA will **NOT** work as there is an intron in between the C and rearranged V(D)J genes. For more information regarding RNA versus gDNA as a template, please visit our website at www.irepertoire.com. ## **Package Contents & Storage** #### **Shipping & Storage** Upon receipt, store components as follows: - ◆ Store iRock Cassettes (HTBI-M or HBHI-M) at 2 8°C. - ◆ Cassettes should be stored in a clean area designated for PCR setup. #### **Package Contents** Cassettes are sold in batches of 10 barcodes (molecular IDs). Each shipment of 5 sets (50 cassettes) comes with an iRepertoire magnetic stand. We currently offer **two** reagent systems on the automated iCubate™ platform: - ◆ HTBI-M for human TCR beta, Illumina MiSeq 250 PER, covers V and C genes; - → HBHI-M for human BCR heavy chain, Illumina MiSeq 250 PER, covers V and C genes; **IMPORTANT NOTE:** Both systems work with RNA samples. These systems are **NOT** compatible with gDNA. #### **Cassette Label** The cassette has five important pieces of information: 1) the reagent system name (HTBI-M or HBHI-M, referring to either the TCR-beta or BCR-heavy chain amplification) 2) the molecular identifier barcode, which is used by the iRweb software to demultiplex pooled samples 3) the physical barcode, which is interpreted by the iC-systemTM 4) the lot number and 5) the cassette expiration date. Please be sure to record the molecular identifying barcode with the sample it is assigned to both in the iC-systemTM and on a spreadsheet (as demonstrated in Table 2). This spreadsheet will be necessary for submission of data through iRweb. ## **Materials & Reagents Not Included** - → iCubateTM System - + Qiagen® One-Step RT Enzyme (available in kit Cat No. 210212) - + Vortex - + Cold block or ice - + Mini-centrifuge/Mini-spin - Pipettes - Filter tips - + PCR tubes - + Timer ## **General Information** #### **Nucleic Acid Handling Precautions** - Maintain a sterile environment when handling nucleic acids (NA) to avoid any contamination from nucleases. - ♦ Ensure that no nucleases are introduced into the solutions supplied with the panel. - Make sure that all equipment that comes in contact with NA is sterile, including pipette tips and tubes. - RNA is extremely sensitive to degradation. Ensure that RNA is stored at -80°C prior to use and maintained at 4°C during template addition. Gently flick RNA sample to mix once thawed, **DO NOT VORTEX**. Avoid excessive freeze-thawing of RNA samples to prevent degradation. - ♦ A minimum of 100 ng of RNA from sorted cells with a 260/280 of 1.8 or greater is recommended as the starting material to obtain the best diversity of the library. It may be possible to achieve amplification with less than 100 ng NA from sorted cells. If using total RNA from whole blood, we recommend adding between 500-1000 ng (1200 ng maximum) of total RNA to the cassette. #### RT-PCR / PCR Handling With the use of the closed cassette, many of the contamination concerns associated with nucleic acid amplification set-up are alleviated. Nonetheless, it is important to put in place additional failsafes to both avoid cross contamination between samples and contamination of the laboratory environment with amplicons. In order to avoid contamination, we highly recommend that separate rooms and equipment be used for cassette storage, template addition, and the resulting amplified immune libraries. The use of a hood equipped with a UV light is recommended for template and enzyme addition step. **Once the template and enzyme have been added to the cassette, ensure that the cassette is closed by sealing the black cap prior to adding template and enzyme to another cassette.** Do not lock the cassette. It is important not to handle cassettes of the same barcode at the same time. Once the cassette has finished, open the cassette to retrieve the product in a separate room from PCR set-up. #### **Elution of PCR product from Magnetic Beads** The final step prior to quantification is the elution of the barcoded library from the magnetic beads in the cassette. Do not handle PCR products from different templates with the same barcode at the same time to avoid cross-contamination. #### **Minimum Cell Counts** The library can be made from as few as 3000 sorted cells. However, to prevent RNA degradation and loss during extraction, carrier RNA (such as yeast tRNA) should be added into the sample **before** RNA extraction. If carrier RNA is used, an accurate RNA concentration of the original sample will be difficult to assess. Therefore, for samples with low cell counts, we recommend that you use the entire RNA in the reaction by eluting the RNA in a smaller volume (maximum for reaction: 1200 ng RNA or 16.00 μ L). #### **Outline of the Procedure** The cassette performs the arm-PCR method, which includes two rounds of PCR reactions, PCR1 and PCR2. After PCR, the cassette will remove primer-dimers automatically. RNA should be used as a template. If gDNA is used, then there will not be any amplification due to a large intron gap between the J and C genes. #### **Outline of the Procedure continued** When preparing to begin the procedure, please follow the below outline. | $ \mathbf{V} $ | Read the iRock manual prior to beginning. | |----------------|--| | | Fill out the sample spreadsheet, which can be found in Table 2. | | | Link the cassette by following the "Cassette Preparation" protocol. | | | Add the template-water-enzyme mixture by following the "Sample Preparation" protocol. | | | Load the cassette onto the processor by following the "Running A Cassette" protocol. | | | Elute the amplified and purified library by following the "Elution of Library" protocol. | | | Check the concentration of the amplified library. | | | Pool libraries of different molecular IDs together for QC and sequencing. For a discussion on prope pooling of libraries, please visit www.irepertoire.com at "Support > Document Center > Manuals" to download the Pooling Samples Guide. | | | Submit pooled libraries for QC and sequencing on the Illumina MiSeq platform using 250 paired-end reads | | | Please fill out a data submission form, which can be found at www.irepertoire.com at Document Center 2 Forms > Data Submission Form. Instructions for data submission can be found on the data submission form. | | | Submit the raw data from the Illumina MiSeq to iRepertoire. Data can be shared with iRepertoire using Illumina Basespace (share with info@irepertoire.com), via ftp, or by mailing a disk. Further instructions will be automatically e-mailed to you once the data form has been submitted. | ## **I. Cassette Preparation** #### **Before Beginning** Ensure the PCR setup area and pipettes are clean and free from contamination. Remove the cassette from the 2 - 8°C. Each cassette must be linked to the processor prior to placement on the machine. Linking the cassette ensures that the cassette is pre-associated with the correct program file. Do this prior to preparation and addition of the template-water-enzyme mixture. The enzyme is temperature sensitive and should remain on ice. #### **Method** - 1. Turn on the iC-ReaderTM, iC-ProcessorTM, and iMac®. User name: iCubate Password: icubate - 2. Start the iC-Report™ software. Login as username Administrator and password 123456. - 3. Click on the iC-Report[™] icon on the desktop. Select iC-Processor[™] to use. - 4. At the home screen on the iC-Report[™], click the New Request button in the top left corner. It is a green circle with a white plus sign in the center. - 5. Click Link Cassette and scan the barcode using the hand-held barcode scanner. - 6. Upon successful linkage, the cassette ID will match after the version number on the cassette's barcoded label. - 7. The Panel Type should either be iRHTBI-M or iRHBHI-M. This should match the Panel Name on the top of the cassette. Processor Seq should read FDA. - 8. Click Okay. - 9. Scan any remaining cassettes by repeating steps 1 5 using the hand-held barcode scanner. - 10. Continue on to "Sample Preparation" steps to finish preparing the cassettes for processing. ## I. Sample Preparation #### **Before Beginning** Ensure the PCR setup area and pipettes are clean and free from contamination. Qiagen® One-Step RT-PCR reagents (particularly the reverse transcriptase) are temperature sensitive. Keep templates and enzyme on PCR cooler/ice until ready to load into the cassette. This manual assumes that the end user has had proper training on the iCubate™ platform. Please become familiar with the iC-System™ by reading the user manual in full prior to proceeding. #### Method - 1. Review Table 1 and make sure that the sample sheet (Table 2) is complete. - 2. Take out only cassette barcodes associated with the completed sample sheet of the 4°C storage. - 3. Flick the RNA template tube and the RT enzyme and quick spin. - 4. Prepare the template, water, and enzyme mix just before ready to load into the cassette. For best results, keep the template-water-enzyme mix on ice/cold block until ready to load. - 5. Proceed to the "Running A Cassette" portion of the manual in the next section. Table 1: Sample Set-up example. | Reagent | Volume (μL) | A Sample Reaction | |-----------------|-------------|-------------------| | Template* | Χ μL | 8.75 | | Nuclease-free H | ΥμL | 7.25 | | Enzyme | 1.60 | 1.60 | | Total | 17.60 | 17.60 | Table 2: Sample Set-up Sheet | Sample
Number | Sample
Name | Barcode | Input RNA
Concentration
(ng/µL) | Desired
RNA
Amount
(ng) | RNA template
amount (μL)
max: 16.00 μL | Η
(μL) | Qiagen®
One-Step RT
Enzyme (µL) | Total
Reaction
Volume (<i>µ</i> L) | |------------------|----------------|-----------|---------------------------------------|----------------------------------|--|-----------|---------------------------------------|---| | Ex | NEC-01 | HTBI-M-01 | 126.2 | 500 | 3.96 | 12.04 | 1.6 | 17.6 | | 1 | | | | | | | 1.6 | 17.6 | | 2 | | | | | | | 1.6 | 17.6 | | 3 | | | | | | | 1.6 | 17.6 | | 4 | | | | | | | 1.6 | 17.6 | [†]The total reaction volume (μ L) should be equal to 17.6 μ L for all reactions. ^{*}Template volume may vary from 1 - 16.0 μ l. 100 ng **minimum** of template RNA is recommended when using extracted nucleic acid from **sorted** cells. If using total RNA from whole blood or tissue, then 1000 ng is recommended (maximum of 1600 ng). Adjust the volume with nuclease-free H_20 accordingly. The template amount must be determined empirically. To avoid contamination, apply the template in a separate designated area. ^{**}Amount of H_2O is dependent on the template concentration and should be added to reach 16.00 μ L as the final reaction volume (see above note). ## **II. Running a Cassette** #### **Method** - 1. Vortex the cassette for 3 pulses of 4 seconds each by holding the cassette over the vortexer in the center. - 2. Gently tap the cassette on the bench top 10 times to remove air bubbles from the bottom of the wells. Without turning the cassette upside down, look underneath through the clear plastic to make sure the fluid is at the bottom of the wells without any air bubbles between the bottom of the well and the fluid. - 3. Using a separate pipette tip for each sample, add 17.6 μ L of template-water-enzyme mix to the cassette PCR well. Dispense the loading template-water-enzyme mixture into the PCR well to the first stop of the pipette. Do not go to the second stop. Doing so could introduce an air bubble into the bottom of the PCR well. - 4. Seal the cassette by closing the black cassette cap. Do not slide the clear cap sealer over the black cassette cap to the locked position. If the cassette is locked, then it will be difficult to retrieve the final product for sequencing. - 5. The cassette should have been linked from iC-ReportTM to the iC-ProcessorTM prior to template-water-enzyme preparation. If not, please follow the instructions for "**Cassette Preparation**" on page 9. - 6. Slide the cassette into the processor with the barcode side closest to the user. The cassette will lock into place and the light color will change from green to orange. - 7. The cassette run time is approximately 7 hours. This time is approximate, therefore, the cassette may finish slightly before this time. - 8. When the cassette processing is complete, it will eject from the iC-Processor™ slot. Each cassette ejects when its processing is complete. - 9. It is recommended to remove the PCR product from the bead as soon as possible, but it can be left on the bead for up to 12 hours. Please note that leaving the PCR product on the bead can make it more difficult to retrieve the purified product. ## **III. Elution of Library** #### **Method** - 1. Carefully remove the cassette from the iC-Processor™ and place on a flat, steady surface. - 2. Carefully, and without inverting the cassette, look underneath the cassette to see if there is a bead pellet (See Figure 2). If there is not, please contact iRepertoire at info@irepertoire.com. - 3. Open the black cassette cap. - 4. Aspirate (pipette up) 37 μ L of nuclease-free water using a sterile pipette tip but do not dispense into the PCR well containing the bead pellet of the cassette immediately. - 5. Without inverting the cassette, look underneath the cassette and into the PCR well. Attempt to push the bead down to the bottom of the well using the pipette tip and then dispense the water from the pipette tip into the PCR well on top of the bead. - 6. Gently pipette up and down 30 times to fully incorporate the beads into the elution water. The elution water should be an even rusty color throughout. There may be a few clumps, but the bead should be mostly resuspended. - 7. Incubate the cassette at room temperature for 1 minute. - 8. Place the cassette on the iRep magnetic stand. Ensure that the PCR well is fitted onto the slot with the magnet before proceeding (see Figure 3). - 9. Slowly aspirate the supernatant from the PCR well without removing the cassette from the magnetic stand and place into an appropriately labeled PCR tube (not provided). Ensure that the beads remain in the cassette's PCR well and do not transfer to the PCR tube. - 10. Discard the cassette in an appropriate biohazard container. - 11. Proceed to "Determining if Library Generation was Successful" **Figure 2:** Picture of bead pellet in PCR well after cassette processing has completed. **Figure 3:** Orientation of iRep magnetic stand and the cassette. # IV. Determining if Library Generation was Successful - 1. To determine if library generation was successful, use a spectrophotometer such as the Nanodrop, to measure the DNA concentration. The average concentration of an amplified library is 50 ng/ μ L with an input of 1000 ng of total RNA and an elution of 37 μ L of nuclease-free water when measured with a Nanodrop. The ranges in Table 3 may not apply if using another method of concentration determination such as a Bioanalyzer. - 2. If the concentration is greater or equal to 20 ng/ μ L when eluted in 37 μ L of nuclease-free water, then the run is considered a success. - 3. If the concentration is between 10 and 20 $\text{ng/}\mu\text{L}$, then check for a major product by running some or all of the amplicons on a 2% agarose gel to see if amplification was achieved. If all product was run, gel purify the major band. - 4. If the concentration is less than 10 $ng/\mu L$, then typically the run is not considered a success (See Table 3). However, it is still advisable to check the amplification on an agarose gel. Table 3: Concentration results to determine success | Concentration (ng/µL) | Result | |-----------------------|--------------| | ≥20 | Success | | 10 - 20 | Gel Purify | | ≤10 | Unsuccessful | ## **Amplicon Size Range and Primer-dimer Removal** Each amplified repertoire represents a large number of sequences distributed over a size range. The size range is dependent on the BCR or TCR type and the primers used in the amplification. The PCR product of the Illumina heavy chain BCR library (HBHI-M) is around 530 bp, ranging from 490 - 570 bp. The PCR product of the Illumina TCR beta library (HTBI-M) is around 520 bp, ranging from 500 - 540 bp. On a gel, the major product of these libraries appear at the 500 bp mark as demonstrated in Figure 4. One of the benefits of using the iC-CassetteTM for immune repertoire amplification is that primer-dimers are removed automatically and gel purification is not required for this step. If the concentration of the amplified library is between 10 and 20 $\text{ng/}\mu\text{L}$, then gel purification might be necessary to ensure that the major product is present. If primer-dimers are present, they typically appear around the 150 bp marker. Figure 4 shows a 2% agarose gel where the amplification was performed both manually and on the iC-SystemTM with primer-dimer removal. The situation depicted in Figure 4 is the most likely scenario if amplifying a library that produces primer-dimers. In this case, the cassette can efficiently remove these artifacts. However, there is a limit to the amount of primer-dimers which can be removed by the magnetic beads in the cassette. A run with no RNA template results in primer-dimer production only. After bead selection, the concentration of the product (or "primer-dimers") is on average 3 ng/µL. Therefore, this run would be considered unsuccessful. Table 4: Size ranges (bp) of the PCR product of a BCR and TCR library for Illumina MiSeq. | | Amplicon Size Range (bp) | |--------|--------------------------| | НВНІ-М | 490 - 570 | | HBTI-M | 500 - 540 | **Figure 4:** Sample agarose gel output for amplicons from both manual amplification (product control and manual elution control) and automated library preparation with primer-dimer removal on the iC-System[™] (blades iR-1, iR-2, iR-3, and iR-4). A: Major product. B: Non-specific band. C: Primer dimers. Gel ladder is not to scale. ## **High Throughput Sequencing** After going through QC, the Illumina MiSeq Reagent v2 500 cycle sequencing kit (MS-102-2003) can be applied directly to the library constructed by the iRock cassette due to the built-in adaptor sequence in the library (see "Appendix A" for more information). Up to 10 libraries can be pooled together to reduce sequencing cost on the Illumina MiSeq if library construction kits with different barcodes were applied to different samples. Our software pipeline recognizes the barcodes and decodes them automatically during analysis. Contact us for the barcode sequence, if necessary. #### **Data Upload** Customers using our cassettes in their experiment will be provided with complimentary basic data analysis service. Sequence data can be shipped with a portable hard disk or an online file sharing method such as Dropbox or Illumina's Basespace. **We suggest users backup their data before sending it to us.** Submit the raw data from the Illumina MiSeq to iRepertoire directly without any manipulation. Please fill out a data submission form, which can be found at www.irepertoire.com at Support > Document Center > Forms. Instructions for data submission can be found on the data submission form. #### **Data Analysis** - 1. Barcode sequencing decoding - 2. V, D, J, & C mapping - 3. CDR identification - 4. Analysis results rendered through web pages - 5. V-J combination distribution (2-D, 3-D map) - 6. Listing CDR3 - 7. CDR3 algebra, compare repertoires and identify shared CDR3 - 8. Diversity index calculation - 9. Web access to distributions including: - a. N-addition (normalized and non-normalized) - b. CDR3 length (normalized and non-normalized) - c. V, J nibbling (normalized and non-normalized) - d. V, J usage (normalized and non-normalized) #### Please visit the demo site to experience our software pipeline. Visit this link: https://irweb.irepertoire.com/nir/, then use "demo" for user ID, and "12345" as the password. Follow the navigation on the left to see the features of the iR software. ## **Appendix A** #### **Sequencing Adaptors** After the second round of amplification, the full-length Illumina sequencing adaptor A (below) is associated with an amplicon at the C or J region while adaptor B (below) is associated with an amplicon at the V region. Adaptor A: 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3' Adaptor B: 5'-TAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-3' #### **Sequencing Suggestions** - 1. After the size-selection procedure, the purified product should go though cluster generation directly without further amplification as the full-length Illumina pair-end sequencing adaptors have been attached to the VDJ sequences already (see above). - 2. We recommend paired-end sequencing for product amplified with primers listed in this manual. Paired-end reads are from one DNA fragment. This information is useful for extending sequencing reads to cover the entire CDR3 region and for identifying V and J germline segments reliably. In addition, we also use the paired-end information to calibrate whether a CDR3 fragment is authentic. - 3. As for coverage, we recommend 5 reads for each cell so that, theoretically, every cell will be sequenced according to the Poisson model. For instance, if your sample contains about 1 million T cells, we recommend you allocate about 5 million reads for this sample. Note that samples sequenced in the same lane need to be labeled with different barcodes, while samples sequenced in different lanes or runs can be labeled with the same barcode (see "Pooling Samples"). - 4. Prior to processing the samples on the Illumina platform, it is recommended to spike in 15 30% of PhiX (sold by Illumina) per flow cell to improve the efficiency of the run. If PhiX is not available, or you would like another option, then it is possible to spike in another library that is a whole genome or exome that has high diversity. It is not recommended to use any RNAseq products. #### **QC Prior to Sequencing** There are certain quality control checks that should be adhered to prior to sequencing. We recommend that Qubit fluorescent-based quantification be performed, then bioanalysis with Agilent's Bioanalyzer, followed by KAPPA analysis (qPCR) on a 10 nM dilution to independently validate concentration and determine the final concentration for sequencing. From this information, you can perform the PhiX spike-in, dilution, and load onto the Illumina Miseq platform for 250 paired-end reads as per the instructions provided by Illumina. If sequencing with a vendor, the vendor typically handles the pre-sequencing QC steps. As stated in the sequencing suggestions, the immune repertoire libraries are considered low diversity libraries, and a PhiX spike-in is highly recommended. ## **Appendix B** #### MiSeq Sample Sheet Wizard Workflow Parameters For detailed instructions on running the MiSeq, please see the Illumina manual associated with the device. To run an iRepertoire generated library on the MiSeq, follow the Sample Sheet Wizard set-up detailed below. Please note that we do not use Illumina indexing; we use our own molecular identifiers to de-multiplex the data during analysis. On the Experiment Manager Welcome Screen, select "Sequence." After logging in, select "Other" and "FASTQ Only." #### **Under FASTQ Only Run Settings:** 1. Reagent Cartridge Barcode: Fill this in 2. Sample Prep Kit: TruSeq LT 3. Index Reads: Select the "0" dial 4. Fill in the fields from "Project Name" through the "Date" 5. Read Type: Select Paired-end dial 6. Cycles Read 1: 2517. Cycles Read 2: 251 #### **Under FASTQ Only Workflow Specific Settings:** 1. Remove all check marks (i.e., deselect "Use Adapter Trimming"). **Figure 5:** Illumina MiSeq Sample Sheet Wizard workflow parameter settings for running HTBI-M or HBHI-M reagent systems on the Illumina MiSeq. ## **Appendix C** #### **Troubleshooting Issues** If you run into issues with a cassette and suspect that it is not sample related, please forward the following information to info@irepertoire.com so that we may help trouble shoot the issue to the best of our ability. - 1. Were beads in the PCR loading well when the cassette finished? - 2. What was the concentration of the eluted library? - 3. Did you run agarose gel electrophoresis? If so, please send us the image. - 4. Please also send us a picture of the top of the cassette. - 5. A picture of the side of the cassette (showing foil puncturing if possible from the iCubate branded side). - 6. Pictures of the bottom wells. - 7. iR-Cassette Serial#: - 8. iC-Processor Blade#: - 9. A copy of the master log **Figure 5:** Illumina MiSeq Sample Sheet Wizard workflow parameter settings for running HTBI-M or HBHI-M reagent systems on the Illumina MiSeq. We Find Health in Your Diversity. W W W . I R E P E R T O I R E . C O M